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On the Eneray Scattered from the Interaction of
Turbulenoce with Sound or Shook Waves

*1 -By -
IL. J. Lighthill, B.A.

(Department or Mathematios, University of ILanchester).

lit December, 1952

The energy scattered when a sound wave passes through turbulent
fluid flow is studied by means of the author's general theory of sound
generated aeodyamically. The energy soatterod per unit tur from unit
vowume of turbulence is estimated (3) as

wherejis the intensity and A the wavelength of the incident sound,
and v," is the mean square velocity and L, the racro-ecale of the
turbulence in the direction of the incident sound. This formula does
not assume any particular kind of turbulence, but does assume that

A/L1  is less than about i. For turbulence which is isotropic and
homogneous the energy scattered, and its directional distribution, are
obtained for arbitrary values of //L. It is predicted that components
of the turbulence with vave-number k will scatter sound of wave-number
K at an angle 2 sin-1 (2 K). The statistics of multiple successive
scatterings in considered (§4), and it is predicted that sound of wavelength

less than the micro-scale of the turbulence will beoe uniform (i.e. quite

randgp) in its directional distribution in a distance approximately

The theory is extended (05) to the case of an incident acoustic

pulse. Hoever this extended theory cannot be applied directly to the

case of a shook wave, for which it would predict infinite scattered energy.

This is due to the perfect resonance botween successive rays omitted

forwards which would occur if the shook wave were propagated at the speed

of sound. By taking into account (§6) the true speed of the shock wave

(subsonic relative to the fluid behind it), the theory is impiroved to give

a finite value, 0.8s times the kinetic energy of the turbulence traversed

by a weak shook of strength s, for the total energy scattered. However

the greater part of this enorey catches up with the shook wave, and
probably is mostly re-absorbed by it, and only the remainder (tabulated as

a function of s in Table i) is freely scattered, behind the shook wave,

as sound. The energy thus freely scattered when turbulence is ooveotod

tbwough the stationary shook wave pattern in a supersonic jet my form

an iqiwtt yu$ of the sound field of the 3et.
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1. Introduction

The two main types of oscillatory disturbance in fluids ore sound
(dilatational) and turbulence (rotational). Sound is propagated; turbulence
is not; both the sound pressures and the turbulent vortex lines arc convocted and
diffused. Infinitesimal dilatational and rotational disturbances to a
uniform mass of fluid at rest would not interact, as is well known. However
between real sound and turbulence there is a non-linear coupling.

One aspect of this coupling is that, when sound waves pass through

a given volume of turbulence, some sound is radiated from it at an angle to
the incident wave; in other words it is scattered. In the present paper a
theory of this scattered sound is deduced from the author's general theory
(Lihthill 1952) of sound generated aerodynamically.

The subject has received some attention in Russia, and Blokhintzev
(1945, 1946) appears to have given a detailed theory. However the assumptions
in this theory are not made clear in the papers available to the present author.
In Britain Ellison (1951) gave an account of scattering by a medium with
random variations in refractive index, and his theory could probably be
modified to deal with scattering by turbulenco. It confines its attentions,
however, to the distribution of intensity along the wave fronts of plane
waves passingthrough homogeneous turbulence. In the present paper the
turbulence is not assumed homogeneous, and the scattered sound emerging in
a given direction from a given part of the turbulence is isolated. The theory
is therefore particularly suitable for dealing with the effect of a limited
region of intense turbulence.

The scattering of sound due to the fluctuating velocities of
turbulence bears an obvious analogy to the scattering of light due to
fluctuating number density of polarizable molecules. It is shown in @2
that the analogy is even stronger than at first appears, since the
quadrupoles, to which on the Lighthill (1952) theory the turbulence is
acoustically equivalent, are in fact partly polarized by the incident wave.

The radiation field of those quadrupoles which re polarized is
calculated in §3, and its mean square is taken to find the corresponding
intensity field, which is shown to be that of the scattered sound. Since

the mean has to be taken with respect to the fluctuations in the turbulence

(as well as the more rapid fluctuations in the sound waves), a fair time
may be needed for the mean to be achieved; in the language of the acoustics,

"fading" may be observed. However if the intensity rosulting from

scattering by a volume of turbulence large compared with the individ-a3 ,

eddies is measured, the mean or sethng near it may well be realised at if
a3W instant, because largo groups of the eddies traversed may have effectively
identical statistical properties.

It is shown in 12 that the field of the polarized quadrupoles is
unoorrelated with the other sound fields which are present, which means that
the calculated intensity distribution can be added to theirs to obtain the

total intensity field. For some time the author bulioved that an argument
along theso lines could be used to prove that the scattered energy was

extracted from the turbulence itself; he is grateful to Dr. George Batchelor

for refusing to believe this sufficiently pertinaciously for the author to
find the flaw in his argument. Some of this work on energy relationships
is indicated in the Appelrix, which shows how the incident gave is in fact

attenuated by an amount comparable with the energy scattered. The author

would still guess that some f the energy of turbulence may be roduoed by

the passage through it of (especially) ultrasonics, but the evidono sms

to be that b7 far the bulk of th energy of the scattered souMl is oxtraotod

as in other scattering PhOnomna, from the incident wave.

As/

INK
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As the frequency of the incident sound wave increases the total
scattered energy increases but the angle at which it is scattered decreases.
In consequence the distance in which the direction of a plane wave becomes
practically random (§4) varies much less with frequency.

When the theory is extended (§5) from the case of steady incident
sound waves to that of on incident acoustic pulse, the scattered sound field
is deduced in terms of the spectrum of the total energy of the pulse (instead
of the intensity spectrum of the wave). The quantity which is deduced is
then the total scattered energy (and its directional distribution), as
opposed to the time rate of scattering of energy. But, as with the steady
sound wave, this quantity is correct only as a man, although no longer a
mean with respect to time. Rather it is a "stochastic" mean,. or mean
over a number of experiments. For each eddy reacts to the incident pulse
in a manner depending on its state at the instant when the pulse traverses
it. However, as before, the mean may be more closely achieved in one
experinent if large numbers of similar eddies are traversed.

Once more the scattered energy is found to increase rapidly with
the frequency of the pulse, and indeed, in the extreme case when there are
discontinuities in pressure in the pulse, the theory gives a non-integrable
directional distribution of scattered energy, so that the total scattered
energy is infinite. This impossible result is due to an oversimplification
in the theory, namely that the speed of a pressure discontinuity( shook wave)
has been taken to be exactly that of sound. If this were so then pulses
emitted forwards as the incident (perfectly sharp) pulse passes over them
would be perfectly superimposed, and this corresponds to the infinity in
the directional energy distribution at the direction of the incident pulse.

In §6 it is shown that when the departure of the speed of a real

shook wave from that of sound is taken into account, this perfect resonance
disappears, and a finite value for the scattered energy emerges. All that

is left of the infinity is that the energy which is scattered by the shook is

proportional to the first power of the amplitude, for weak shocks, instead of
to the square (as it is for continuous pulses). In fact for a Meak shook of

strength Ap/p = s, the energy is predicted to be a fraction 0.Ss of the
total kinetic energy of the turbulence traversed by the shook.

However a large part of the scattered energy is probably absorbed
by the shook wave itself and goes towards restoring, in part, its strength.

This is because the shock wave speed is subsonic relative to the fluid

behind it, so that sound emitted forward at a small enough angle (and there

is a strong preference for forward emission) must run into the shook.
It cannot be transmitted, because the shock is supersonic relative to the
fluid ahead of it. Doubtless some is reflected, but there is OvidOnOc
(Lighthill 194.9, 199) that reflection coefficients of shocks tend very

rapidly to zero with their strength.* So it is likely that much is absorbed.

Making the assumption that all is absorbed, we are left (§6) with

an expression for the sound energy which in free scattered, i.e.* without
hitting the shook again. This expression should be of vnlu in PrOdicting
how Aoh sound is produced in a supersonic Jot as a result of tubulsnoe
passing through the stationary shook waves in the jet.

2./

itLighthilll (1950) shows this for waves oathing up with the shook head-on.
It is lks l that taN a is toe fr waves obligue th the Shook,a in tha e

dicsino h ttoayos Lgtil149 led niain
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2. Desoription and Justification of the Anroaoh used.

Let vi be the velocity field (a function of space and time)
of a turbulent flow. Similarly let VI be the velocity field of a
sound wave incident upon it. The magnitudes of vi and Vi are supposed
to remain small compared with the speed of sound a.

Then as a first approximation (from which the scatterod sound will
be derived as a second approximation) the combined velocity field will be
taken to be vi + Vi; so that the fields are made to combine linearly as
they would for infinitesimal disturbances. The value of this assumption aa
a first approximation is examined critically later in this sootion.

Now the basic conclusion of Lighthill (1952) was that in anr gas
flow, with velcoity field v4, the variations of density aro governed by
the equations of sound with a right-hand side which corresponds physically
to a volume distribution of quadrupoles. Further, if tomperature variations
ar small (this point also is reconsidered below), and the magnitude of vi
is small compared with a, then a good approximation to the quadrupole
strength is povivj per unit volume, where Po is the density on the
undisturbed state.

Hence in the present problem a first approximation to the
instantaneous quadrupole strength per unit volume is

po(vi + Vi)(v j + Vj) = povivj + pOViVa. + po(viVj + vjVi). ... (1)

Thus, to obtain a second approximation to the density field, we must dd up
those due to the incident sound wave and to the quadrupole distribution (i).

The three parts into whioh this distribution has been divided on
the right-hand side of (1) represent, respectively,

(1) the quadrupoles responsible for the sound already generated by the
turbulence in the absence of the incident wave;

(i) those responsible for self-modifications of wave form in the

incident wave due to its finite amplitude;

(iii) those responsible for the sound generated by the interaction of

the turbulence and the incident wave. These last, of strength
po(vivj + vfi) per unit volum, my be called the soatterina quadru les.

Note that each scattoring quadrupole has MI of its aes in the
5irection of the incident wave Vi.  Thus, as foreshadowed in §1, it is in

this sense polarized by the inoident wave.

From the point of view of the plhsical conclusion (Lighthill 1952,

12) that aerodynamic generation of sound is due to fluctuatiMs In the flow
of uomntum across fied surfaces, the scattered sound is seen to be -
Vvdumd by the momentum of the turbulence being shaken to and fro by the
inoldent pon wave, and vie verse.

Now if the turbulent velocity field can be split up into a man

velocity fisld ri n d a fluctuating field vj' with sero man, then
the soatteing quadrupoles oan be corrssopoingly split. The Peit

yields a fild wich is OollelatSd with the inodent wae, a tostle
;. , Ithey oomtituits tiN Yine aS 'diaatd__ h the mu f2o. .
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On the other hand the turbulent velocities v i ' yield a field of
soattoring quadrupoles

Po(vi'Va + vj'Vi )

quite uncorrelated with the incident wave. For firstly their mean is zero
because that of vi ' is zero and v i ' and V1 are statistically unrelated.
Hence the covariance of (3) with Vk, i.e., toir mean product of their
deviations from the mean, is zero, by a repetition of the same argument.
Similarly the quadrupoles (3) are uncorrelated with all the other quadrupole
fields which are present. But sound fields which are uncorrelated (or, in
the old Rayleigh terminology, unrelated in phase) have the well-known
property that their intensities can be added to give the intensity of the
combined field.

It follows that the intensity field of the quadrupoles (3), if it
can be evaluated, forms a genuine addition to the other sound fields which
are present, and may be described briefly as the scattered energy. However
one cannot conclude that the incident wave passes through the turbulence unaltered,
even if there is no mean flow to refract it, because, as is shown in the
Appendix, a correlation which exists between the incident wave and a sen
approximation to the scattering quadrupoles accounts for a rate of energy
loss in the incident wave comparable with the rate at which energy is
scattered.

Of course in so far as the incident wave is modified as it passes
through the fluid, whether as a result of refraction by the man flow,
attenuation by the turbulence, or ordinary attenuation, it is the modified
value of Vi which should be used in the scattering quadrupoles and in
expressions which will be deduced for the scattered energy. This is the

main limitation on the use of vi + Vi as a first approximation. On the

other hand it is shown in the Appendix that changes in Vi due to the

variable phase shifts which result from convection of sound by the

turbulent flow can affect the scattered energy only negligibly.

Another source of attenuation is temperature variations, if they

are present. .To see how they fit into the present approach, note that
the quadrupole distribution (Lighthill 1952) resulting from variations in
the variables of state is

(p - pc) - 4A- po)]8ij L - s- - o)SiJ (

where p, p, s ar pressure, density and specific entropy and suffix zero

refers to the undisturbed state. This shows incidentally that those
k temperature variations which result from the (nearly adiabatio)

pressure fluctuations in the turbulence can be neglected. It-is variations

of specific entropy, rather than temperature, that produce attenuation by

scattering (the two being proportional only if kinetic temperature variations

are negligible), or in other worcls it is temperature variations which originate
indmpendntly of the turbulene (although their subsequent ditribution May

have been influenced by turbulent onv9ection).

Nqow the quadrUpolas (4.) are. correlated with Vi end with other
wqaad-upoles, because arproximtelY (since conditions for aprtiO Of fluid

WN' nearly adiaba~tic)

V i (Vi + . vj)--1 9 *#,(2)

at a1t

when./
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where 8s/axi changes only slowly with time. However, since Vi + j + v1
has zero correlation with the quadrupoles (3), one may infer that the effect
of the entropy variations in scattering and attenuating the sound does not
substantially modify the scattering due to the turbulent velocities.

Finally it should be noted that the scattered energy may in turn
scatter more energy. Although this would be a small effect for moderate
volumes of turbulence, it will appear in §)4 that for high frequency sounds
in large regions of turbulent flow it may be an important faotor in producing
large changes of direction in the waves.

3. Sgatterirn of a Plane Harmonic Incident Wave

If results for a plane incident wave are worked out, then they can
be applied to any incident wave which is approximately plane over distances
of the order of those eddy-sizes which bear most of the turbulent energy.
FPr the scattering quadrupole strength (3) at two points at any greater
distance apart are uncorrelated, and therefore the corresponding intensity
fields can simply be added. Further, if results for a harmonic incident
wave are worked out then those for an arbitrary steady inoident wave can
be deduced if its intensity spectrum is known, as will be seen at the end
of this section.

Consider then the plarib harmonic incident wave given by

vi = Ca co [K(x1 - at)]si .

Its direction of travel is the x: direction. Its frequency is Ka/2%,
but it is found preferable to work rather with the radian wave-number Kc
because the most convenient analysis of the turbulence is with respect to
such a wave-number, and because the effectiveness of a component of the
turbulence in scattering the sound will be found to depend on the ratio of
their wave-numbers. The intensity of the sound wave (6) is

I + 0ae .=. I(7)

Now the strength per unit volume, (3), of the scattering
quadrupoles due to the fluctuating turbulent velocities v1, beoomes

po0a oos - at))(vj8p1 + v ..).

The radiation field (Lighthill 1952) of a quadrupole distribution Tij per
unit volume is given by

P i Po T -- t - --- (9)

the integral being taken over the whole field of quadrupoles. (x signifies
the magnitude of the vector x.)

Now the form of (9), with T given by (8), will be simplified
by the assumption that typical frequeno 5es of vj at a point are small
compared with the frequency Kq/27t of the incident wave (4), so that the
differentiations need only be applied to the cosine term. Notice that if
this assumption were false then the wavelength 21K of the sound would
greatly exceed the size of the eddies (because this is comparable to their
root mean square velocity divided by a typical frequency, which is very
small compared with the velocity of sound divided by the frequency of the
sound, i.e., 27V/, if the frequencies are comparable). But one would
expeot eddies small ompared with the wavelength not to affect the sound
Wgoagation app eeial2y, and indeed this expectation is given quantitative
sport balm.
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Maldng the assumption described, (8) and (9) give

P° XX -- -r - 00 [K(y, + at ] /j t - -----
'o~ 21= xA a,

The intensity of the scattered energy, I., taken as a mean over times

characteristic of the turbulent fluctuations as described in j1, is deduced

as ao/p c  times the mean square of (10), namely as

Is .. .coo [xyo + - - at)] cos ,( + IC .a- at)]

x - ZI

In the integrand of (i1) the mean values of the products of c osines and of
turbulent velocities can be taken separately because the fluctuations of the
two are statistically independent.

The mean product of cosines in (11) is equal to

Y cos [,(y1 - I - I--f )] , ...(12)

ani this can be simplified when x is large compared with I Y" ,I
as it is in the radiation field, to give

coo (k.Q )] where ki  - -03)

Here t is the so-called scattering vector, whose direction bisects that

of the incident wave reversed and that of the point x where the intensity

is to be determined.-

The mean product of velocity deviations in (11), or "covarianoe"

(of which a correlation coefficient is a non-dimensional form) is negligible

if Z and z are points which have no eddy in common containing a significant

part of the turbulent energy. But when they have such an eddy in comnon,

the difference between the times at which those two velocities in (11) are

taken must be negligible, because the ratio of a typical eddy diameter to

a time significant in the turbulent fluctuations is much smaller than the

velocity of sound if the Mach number of the turbulence is low. As a result

one can rewrite the covariace as a simultaneous covariance, and cease to

display the time explicitly, remembering always that the time at which it is

supposed to be evaluated is the time of emission of the scattered 
energy.

Equation (1i), with the simplifications which have been disoussed,
and substituting also for c in terms of the intensity (7) of the
incident wave, beams

---- a .. 1 ( is W

wi3e

who" ,
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Now the quantity Fij( ), in terms of which the intensity of
scattered sound has boon expressed, can be interpreted as the evoctrum, with
respect to the vector uv.ve-number k, of the single volume integral

taken over the whole turbulent flow. (In particular, JpFjPi(k is the
speotrum of the total kinetic energy of the turbulent field. To see this,
note that by Fourier' a integral theorem the integral of Fi (k) over the whole
of )-space gives (16). Also Pi (k) is evidently small w en k is either
large or small compared with the ave-numbors of the encrgy-bearing eddies,
respectively by the Riemann-1obosgue theorem and because for small k it
becomes more and more nearly proportional to the variance of the total momentum
of the turbulence, which is zero.

It follows therefore from (i) that the scattered intensity is large
only at points where the "scattering vector" JL is ooparable in magnitude
with the size of the energy-bearing eddies. Since by (13) its magnitude is

k = 2K sin~6 , ... (17)

where 8 is the direction of the point relative to the direction of the
incident vave, vie can conclude

(i) that if 2K is less than the wave-numbers of the main energy-bearing
eddies there is relatively little scattered sound; this arises from the biggest
eddies only and its directional maximum is at e = (opposite to the
direction of the incident wave);

(ii) that if K is of the same order of magnitude as the wave-numbers
of the main energy-bearing eddies, there is a fairly even directional
distribution of the scattered sound, except for a marked falling off in a
cone near e = 0, wherein the k given by (17) falls below the wave-numbers of the
energy-bearing eddies);

(iii) that if K is greator than those wave-numbers, then the bulk of
the scattered sound is throvin forvard in a cone with 9 small (although
with an interior cone, in which . is nuch smallor, still excluded); the
restriction on the direction to a solid angle of order -K for largo K
then reduces the rate at which the total scattered energy increases with
K from d' as in (11) to c.

One can obtain quite a simple expression for the total scattered
energy in this last case of very high frequency sound, for which the energy
scattered is greatest. For the total energy scattered per unit time is the
integral of (1%) over a large sphere with centre 4 = 0. Now by (13)
this is the sam as x2/ 0 tims the integral over a large sphere in

A-speoe with centre (-K, 0, 0) and radius K. Thus the scattered power is

s • I + + I"
a K!

over such a sphere. But, in oases where Pi%() is significant only where

k/x is small, the integral need be takn olly over the part of the sphere

where/

------------------------------------------------------------

1Noto also that in all eases a minimm in scattered eimug at the direetien
0wulA be expeted, since on the approximations which have led to

.0 when X, 0, i.e.,when 6 a 90*.
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where this is so, and this part (see Pig.i) is approximately the part of the
plane k, m 0 in which Pii(k) is signifioant. Prom this, approxiting
also the ooefficient of 'ijWL in the integral, we obtain

2tI K2 00 cP, . -;> .. P1, (0, k., k,)dk.,k
a

IK2 00

.... /,. v'(y, y , y3 )vI(yl. + w, y y)d , ... (19)
a * 0.

the integrals being equal by (15), and by Fourier's integral theorem.

The inner integral in (19) is often written where L, (Taylor's
"Macro-soale of turbulence", or correlation radius) is a measure of the
width in the xi- dirootion of the energy-bearing eddies at the point y.
In term of this length, the rate at which energy is scattered from u-tr
volume of turbulence, by an incident wave in the x- dlreotion with intensity I,
and with wave-number K large compared with those of the energy-bearing
eddies, is?*

V1
2

Ps 21x2L1 2 ... (20)

The quantitative significance of this result, as of the others in this section,
will be discussed in §4.

A similar result without the restriction on the size of K can be
obtained in a useful form only in the special case of homogeneous isotropic
turbulence. For homogeiwous turbulence the covariance in (05) depends only
on the relative position of and z, and it is usually written

vj(y), R (E-) .= ()

The spectral tensor is then defined (Batohelor 1949) as

Evidently the spectral ensor used above in the general case, namely
px(F), has the value .i ri(kj per unit volume of homogeneous turbulence,
wire signifies "real part of".

Now in isotropic turbulence rii(,) is purely real, and is
expressible uniquely in terms of the spectrum 3(k) of the turbulent energy
(per unit mos) with respect to the scalar wave-number k. In fact

E(k)
ri- )  . ___ _ (k".j - kikj) . .(23)

Thus the intensity of scattered sound per unit volume of turbulenCoe, by

(i 1)with ]Wi() replaced by (23), is

IK" ' x2 i( 2

Agai1r/

SSmall letters (ps and is) will be used for the values, par unit voium of
turbulence, at the wattored vower azdintensity Ps and It
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Again writing 0 for the angle between the directions of incidence and

emission, so that xi x x o005 and k is given by (17), and by
(13) k./x w K( -oos ), one deduos from (24) that

IA? 0o e oot'( )--- -- -- -- -- - (2 K si e) .... (25)
8v? 3?

The form of the term E(2K sire) in (25) makes olear once more
points (i), (ii) and (iii) above concerning the direotion of soattering.
The coefficient oos e exemplifios the general result concerning a minimum
at 900.  The ooeffioient ootl (fe) indicates, as a oonsequenoe of the
special assumption of isotropy, a further minimum at 1800. It does not
however invalidate the oonolusion that i-+0 as 6- 0 beoause as is
well known 3(k) u 0(k') as k--O.

Integrating (25) over a large sphere with centre x a 0 we

deduce the rate at which energy is scattered from unit volume of isotropic
twbulence as

7XIO? 7t
• --- osO' oot (-J) 9(2K sin *0) sinede

a,?~ K~ 3(k) (e
... x . . , dk9 ...(26)

where

MW ( - W)'(i -0 ) .... (27)

It should be noticed that when K is ixoh larger than the valuo of k for
which 3(k) is significant formula (26) beoomos

2 f .(k) .(2)
Ps =---!-----

a . 0 kc

which Srees with (20) in view of the koown formula for isotropic turbulence

1 2V112 (foo (k) v _1

the average in (29) being weighted with respect to the energy spectrum.

The function gk/K), which is plotted in Fig. 2 in its range

0 <k/K <2, signifies the ratio of the energy scattered by an oddy to the

energy scattered according to the formula whioh holds for largo K

(i.e. small k/K). Of course no energy is scattered by edies with
Ik/x 2, aM-hg. 2 mlms it clear that a not too poo approxmatiLon would

be to pay that e ides with k < K make their full contributie to ps,

I -k% ... 1o)
a; k

per un=it wave-nmber, end eddies with k )i do not scatter at all,

Far/OW
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For incident waves which are not pure tones it is easily seen
that their intensity spectrum can be used directly to synthesize the
intensity field of the scattered energy. In ot)..er words the energy
scattered from two different pure tones may be added, since the corresponding
fluctuations are uncorrelatod. For the oovarianoc of two fields like
(10) with different values of K takes the form (11) with different valuesof K in the two osines. The mean product of the two cosines in then
sre. The so 'would be true of tvo sines with different Y, or of a
sine with a cosine even with the same K.

Th s if the incident wave has the intensity spectrum I( .)
(with respect to wave-numbor), then

(i) if the values of K for which I(K) is biggest exceed oonsiderably
the wave-nwmbers of the main energy-bearing eddies,

as .o

(ii) while, for isotropic turbulence, without other restriction,

- W 2x E(k) k
pe K2I(K~dK r ---- - dk .32

0o k K

To close this section it may be noted that, while to a first
approximation the scattered sound has the same frequency n = a/2%
as the incident wave, a slight spread in the frequency of the scattered
sound may be predicted if the analysis is observed more closely. For the
frequencies in the scattered sound must be those in the quadrupole field
(8), and these consist of sums and differences of n and the frequencies
of fluctuation of vi at a point. Thus the degree of spread would be a
measure of the typical frequencies with which the turbulent velocities in
the energy-bearing eddies fluctuate. It corresponds, of course, to nothing
more than the "fading" w!bich has been already discussed in 0.

4. Some Quantitative Conclusions from the Theory for Harmonic Saves.

If the wavelongth /\ = 27/K of the incident sound is smaller
than the macro-scale of turbulence L1 , then by (29) K will exceed by

8
a factor of at least - an average value of k for the energy-bearing

3
eddies. Henco formula (20) should be a reasonable approximation, at least
ocoording to the indications of (26). Then the attonuation due to
scattering, that is the proportion of the energy of the incident wave which
is woattowad in travelling through the turbulence for unit distaene, is

.. ,(33)

a the attemiation per wavelength, due to scattering, is

Thi My be compaed, for exasp, with the vafxia. attenuation per

wavelength due to molaoiloe u aures, whioh (neser 1935, Knudson 1935, and

references/
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referenoes there given) is 0.002 for air at 20 0C. (being attained at a
frequenoy which depends oritically on the concentration of impurities).
Sinoe L, has be eMsumed to ezoeedA, the expresslon (3 i) will certainly
exceed 0;002 if (V ' )i > 0.005a = 1.7m./seo., which is a fairly modest
value.

However the scattored energy does not ompletoly disappear, but
meroly adopts a new direction of propagation. This suggests an attempt
to consider what will happen to a plane or spherical wave on travelling some
distancoe through turbulent fluid, and in particular to find the distribution
of direotion of propagation of the sound, resulting from multiple sucoessive
seatterings.

To achieve this let WAOe) sin ede denote the probability that
after n soatterings the direotion will make an angle between 6 and
e + do with the initial direction.m Then if a relatively large number
of soatterings at relatively small angles w are involved it may be shown
that p satisfies approximately the partial differential equation (of
diffusion)

-- ---------- in 0 ...(35)
an sin ae0

Here 7 denotes the mean square deviation at each scattering. The solution
of (35) such that the direotion is initially e = 0 is

.00 
j omO4i)

p = Z (2m + i)Pm(oos 8 )p-k°m(I4)n .... (36)
M --o

Note that, as n*D, p.-1, orresponding to a uniform directional
distribution after an infinite number of soatterings.

Now when the sound travels a diztanoe 1, molecular and spherical
attenuation will reduce its intensity, but of what energy remains a proportion
independent of those effocts, namely

P' (-01 .(37)

n.!

(Poison's distribution), will havo been scattered n times. Summing the
product of (36) wd (37) from n a 0 to c,, we obtain the distribution of
ireotion after propagation through a distance I as

p . (2m + I)PS(oos e)exp- 0( - P']A( )")

It is sen that if is mil then the diroticoal
distributioD tOads to unifozmitY, as I increases, with a logarithmic
dorelmnt

"' VW taoos' j sin e hat boon Inseted to enmum that for a untifo
£lmtInal distrbuttcn I ? t,
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o = 1f0 0 o$) 27x sin Ode . ... (39)

For homogeneous isotropic turbulence this booomes, by (25),

[Feloos e oot2(0)(2 K sin -,,) sin ede
8 .o .o)

7 f2K

where

N(x) = (1- -)=(1 - 2) (sin" -)/(-,) 2 .

The function N(x), which is plotted in Fig. 3, is very liko :I(x)
(Fig. 2), and in praotioe an adequate approximation to (kO) may be to
replaoe N by I and the rango of integration by (O,K). For very small
wavelengths A smaller even than the mioro-soale of turbulence X, the
expression (401 becoms

--- I E(k)d .... (42)

This integral involvos some of the energy-dissipating eddies Ws well as
somo of the enorgy-bearing eddies, and would be in practice rather loss than

= --- ... (.)

Taking it a 2v- A , we obtain

3 ... (44) :
X a;

as the logarithmic doorement of the directional distribution. By (8)
the distribution will be uniform to within I db when I times () is
logp[([3/0 - 100.')] i 3, i.e,. when

V'I

In words, sound of wavelength less than the mioro-scale ?. of
the turbulence should becomo direotionally random in a distance of order X
divided by the man square Ach number of the turbulenoo. (This is the
distance in which the p9roces beooms complete, but evidently very

considerable changes of direction would oocur in even a tenth of this
distance.)

5. Scattering of an Acoustic Pulse.

Par the scattering of a pulse it would perhaps be reasonable to
assume without further discussion that, as stated in li, the directional
distribution of s cttered enorgy per unit area, as a uloohostio man, Is
relatsd to the sot=e of the inoident pulso' a onergy exactly as in 3

the/

I.
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the distribution of intensi was found to be related to the spootrum of
the inoident wave's intensity, However a brief doduotion of this result
from the basio prinoiples of 2 will be given.

ior a plano pulse in whioh

Vi = af(xl - at)8U ,

the radiation field (9) of the soattering quadrupolos (3) is*

P - Po - . " ---- -t- ,+t - , ... (7)

Wovided that, as assuned (for the wave) in 93, the time-soale of the pulse
is small compared with typical time-soales of the turbulenoe.

Now energy orosses unit area at a distant point x at a rate
ds(p - por/p 0  por unit time. This can be vritten as a double integral

Poe, xixaX
!*T- fr(Y + x - at)f"(z 1 + 3.L -at)

X7-- /

A stochastic mean of (48) is now taken, in the sense described
in 4; this involves putting a bar over the lwoduct vIV . The resulting
oovariance may then be approximated as a simultanous o~v~rianoe

vl,(~v z),for exactly the some reasons as in 93.

Next this mean rate at whioh energy crosses unit area at x
is integrated with respect to time, to obtain the mean total scattered
energy Gg whioh crosses unit area at &_, in the form

where

we
C (S) = f"( r f"(G , + s)d ...

C (s) can be written in term of the eAWW D Peotarm
of f. If fr be written as a Fourier integral

------------------------------------------- !-----------------------

SThe author hopes to be forgiven for an anomaly of notation (difficult
to avoid where random functions are treated) throughout the neXt two

l&S Vhmb puns attached to v's s ip ry doepartie from the man,
*nd prime attached to f's •Man difforentiOtiC
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than the total energy of the pulse (per unit area) is

pa 0fo (r dr - 4paf aT( K)P(-K)dK .. **(53)

and hence

G('K) = 4Woa3F(K)F(-K) ... 54)

is the spectrum of its total energy per unit area per unit wave-number.
But by (51) and (52)

C(s) . K,) , , d i )( F )pF(K,<,2 p r+sd ,d)

Z 2 ,,i f (,)F(-c)Pisd, = -- rKG( K)0oe Kcdc. .
JI - Poa .0

Inserting (55) in (49), and recalling the definitions (13) of k
and (15) of Fij(k), we obtain the result

[?11K Xix± 1L
Go = K)d.j---...-(56)

Comparing this with (1)+) we obtain the principle enunciated at the
beginning of this section.

This principle makes it possible to take over the whole of

the rest of the theory without further labour. The general conclusions

about directional distribution, and its dependence on the ratio of typical

wave-numbers in the pulse and in the turbulence, are unaltered.

In particular, when the wave-numbors containing mst of the pulse

energy are large compared with those containing most of the turbulent

energy, then most of the scattered energy is emitted at a swall angle to

the incident energy. Further the total energy e so emitted from unit

volume of the turbulence*, by (20), is

ona 2L- frCacG(ac)dAK z 2Lpo;v-2-f "(r)dr .. (7
a , 0 ,

The form of (57), the principal result for an acoustic pulse,
makes clear how the energy scattered from a pulse of given energy increases

as its length is diminished. In the limiting case of a pulse containing a

discontinuity in pressure (the idealization of a shook wave) it is evident

from both expressions in (57) that es beomes Wnfinite. In the case of

the first expressign this is because, if f is discontinuous, G(k) is at
least of Order K - as 'it -o, and in fact if f has only a single

discontinuity, of amount €.

0 pas e$
-- .,-58

(Note!

--------------------------- 
a--------- -------------

" Here, as in 93, small letters (e. and g.) will be used for the values,

per unit volume of turbulence, of the total energy scattered Es and the

energy which crosses unit area at a point Gs .
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(Note that, since (57) was based on the approximation that K is arge,

the use of that approximation cannot itself be the cause of the integral
being infinite.)

The predicted infinity in the total energ scattered can be

illuminated by a study of its directional distribution, although this is
possible only for homogeneous isotropic turbulence. In this case the total
energy g per unit area, scattered from unit volume turbulence at an

angle 0 to the direction of the incident pulse, by equation (25) of 93, is

co se5 o0ot2 2(.j) 00

go z a~ -------- /KG( )E (2K i *.) dK, ... (59)8a 2 8x 2 0

and the contribution to this from a shook wave, by (58), is

Paa'e cosse cot2(ye) 1-' ~ 3 Co321 c0s 2 (18)
2--( -- - -- --- -- -- --- -P ... (60)

8a x2  2 sin"-e 16' 20v sin7(2e)

This becomes large so rapidly as a -> 0 that its integral es  over a large
sphere is infinite, in agreement with the result obtained above.'

6. Scattering of a Weak Shock Wave

To get over the difficuty just mentioned, that a pulse with
disoontinuities in velocity produces according to the theory on infinite
amount of scattered energy, consider now a single plane shock wave, at which
the change in velocity is ea, incident upon turbulence. To accord with
the assumptions of 32, c must be small, that is, the shook must be weakY.

To seek to improve the theory, ind remove the infinity, by calling

in to account the finite thickness of the *Lock wave, would leave es still
very large indeed. And it will be seen below that there is another

mechanism in operation which outs off the large wave-number components in

the shock wave spectrum (as far as their effect on scattering is concerned)
at a lower level than is achieved by the internal structure of the shook
wave.

The true cause of the theoretical infinite energy scattered

straight ahead is in the perfect resonance (mentioned in g1),assumed between

pulses emitted in this direction; and this is really absent because the
speed is not that of sound, but is supersonic relative to the fluid ahead
and gubsonic relative to the fluid behind., Since (for this reason) the

saattered enrg must remain behi the shook, let a signify the speed ot

sound in this region; then the shock speed is s/(I + m), where

i ~ ~ ,• ,+ 1 2 y +
o, = .. - - . -- ...(i

and y is the ratio ot the specific heats.

Th velocity distribution resulting from the shook wave is

therefore

Vi - eaH(- (e + Q)x1 + at) j , ...(62)

(where H signifies the unit function), rather than of the form (46).
MoMwe the substitution of (1 + .)xI, - at for x1 - at in (46) makes only

very Slight aifer n in the subsequent work; these ar as follows.

1KV'
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In (47) and (48), (i + a)y replaces y1; in (48), (1 + a)z replaces
Z1. Hence, in the definition (50) of a, ( + L)Y - ) replaces

(A -&z), and finally (56) is correct provided that a X given the new
def init ion

ki  K 0 + ( a )811). ... (3

From this, as in 93 and 5, the value of G integrated over a
large sphere (i.e. the total scattered energy) will be Pound first, for
general turbulence, and secondly the directional distribution of G. for
homogeneous isotropic turbulence will be obtained.

Since G(K) is of order K2 for large K it appears from (56)
that the largest contribution to G. will be from Nave-numbers K large
comparedvtth those of the onergy-bearing eddies. Accordingly the integral
of the term in square brackets in (56), over a sphere of radius x and centre
the origin, is now found under this condition, following closely the method
in §3. By (63) the integral is the same as 2/K

2  times the integral over
a large sphere in k-space with centre (-K (I + a), 0, 0) and radius K.

If, as has boon assumed, the integrand is significant only when k is much
smaller than 1, then the only significant part of the sphere is approximately
part of the plane k, = - Ka. The integral is therefore approximately

2%K2  '

(compare (s) of §3).

Substituting (64) for the term in square brackets in (56), and using

the form (58) for G( K), which is exact for the simple plane shook wave here

considered, we deduce that

, = 2pc7 d! F 1 B(-KCt, k2, k }k) . ... (65)
' 0 **' -

Since the integral of F over the owhole of wave number space is v7

per unit volume of turbulence, equation (65) may be written as

Vi .... (66)PO 1 7pv , ... (66)

where (61) has been used to show that in the case of a shook wave the

energy scattered depends on the first power of the amplitude, 
not on the

second as for continuous waves. It may be shown that the contribution to

(56) from wave-numbors K not large compared with those of the energy-

bearing eddies, which has been neglected in the above, is small Ompard with

(66) at least by a factor 0(c).

Since, in terms of the "strength" s = App of the shook wave,

s/y, and since the turbulent energ per unit volume is approximte1Y

2 p-oy t s the energy scattered is approxtel a fraction

8s 
j......... a 0.89 (for air) ... (67)

,vy O f/
of/



of the kinetio energ of the turbulene traversed by the shook. The reader
is reminded that this formula has been obtained on the assumption that s

Next the directional distribution of the scattered enory Gg per
unit area will be found, in the case of homogeneous isotropio turbulene.
Then (56) becoms (oompare (2J4) of j3)

ge .. ( K...(68)
0JGKdt 2a 0'k

Writing as usual e for the angle between the direotion of emission and

that of the incident shook, we have by (63)

k = 2K{f(I + m) sin'( e) + - 1... (69)

In (69) the factor (1 + a) is rlative unimportant, but the term zz
is essential because it prevents the k in the denominator of (M) from
vanishing as e -> 0. Leaving only the latter in, we find after som
reduction that

r eas sin 2
(B f(K)dK -------------- E12K(sin2(19) e ')&]..( )

Substituting for G(K) in (70) from (58), we deduce that

Ca . cos e in'o
POV .. 8(71)

This may be compared with the value (60) (its limit as a - 0) obtained
by neglecting the difference between the speed of the shook and that of
sound. By oontrast (71) has a finite integral over the s a/- and the
verifloation that (assuming a small) this integral is eaPv' 2/a, as in
(66), is straightforward.

It should now be observed that (see R1) energy soattered at a
suffioiently small anglo e will almost inmediately catch up with the
shook. The oonlition for this is that the o=Ponent, a 0os e, of its
veloolty in the direction of motion of the shook, shall ezocoe the shook
speed /(I + m), in other wordB that

< seo'1( + a) V V(2,%) .... (72)

penco the scattered energy whioh does not run into the shook is the
integal of (71) over a splre of radius x with the conical region (72)
ezoluded. Bine if e > ;(2o) the Ims in the denominator in (71)
MW be neslected, as in (60), this freely sattered energy is

°1-" soo'1(J+a) ooseinoo (e)

87 ,... (73)

Where three tam in the expgnion for sall . are given booauns the
eeetfelents initially increase. In term of the stength a, t froely

,eattex~I
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scattered energy is a fraotion

o.7as - 1.o2 + 0.7sfs ... (710

of the kinetic onergy of the turbulence traversed by the shook wave. The
fractions (67) and (74) for scattered and freely scattered enorgy are
tabulated in Table I.

Table I

... SoateredF..rely scattered
--------------------------------- ----

0.05 0.0 o4 0.006

0.1 0.08 0.014

0.15 0.12 0.0214

0.2 0.16 0.035

0.25 0.20 0.047

0.3 0.214 0.060
-------------- ------- L------------------

The fate of the energy, which instead of being "freely scattered"
is scattered at such an angle that it runs into the shock, has boon
discussed already in §1; it is probably mostly absorbed by the shock.
A rough estimato of the distance it travels, on the average, before running
into the shock, is the length-scale of an energy-bearing eddy. For
evidently the square bracket in (70) is largest when Ka is equal to the
wave-number k of such an eddy.' Hence an average o' the "effective
wavelength" of the shok, is of order ak' , and pulses may be supposed
to originate about this distance behind the shook. Since their speed
exceeds that of the shook by a factor 1 + a, the distance travelled
before catching up with it is of order k-1.

A similar argument can be used to indicate the frequency spectrum
of the freely scattered sound. Since components with wave-number K in
(70) are expected to produce sound with the same wave-number, it is seen
that the wave-number spectrum of the freely scattered sound should reproduce,
roughly, that of the turbulence, but with the wayesnumbers sealed up by
a factor 5osec (je), which varies from (2m) , to E in the range
of directions of the freely scattered sound. (To obtain the fiequency
spectrm, one iat insert the additional sealing-up factor a/2 n).

References

- ---------------- m -------------- ------ -------- -------------------------

* It is evident from this, or even more clearly from (64), that the
effective spectrum of the short cuts off at c time the wave-number at
which the spectrum of the turbulent energy does, say at 5/aLI. But the
intewval structure of the Phook wave introduces its out-off at about

jwVl, so that if e > i'/.L1 ), a Ory small value indeed, the latter
will be uipatnt.
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Appendix

It was pointed out in 12 that since the expression

po(vj v+ i) , ... (75)

which is a first approximation to the strength per unit volume of the
scattering quadrupoles, is unoorrelated with the incident wave V4, the
intensity fields of the two can be added. That of (75) is of oA~r
vV for small v/a and V/a.

Howevor there may be terms of smaller order in the scattering
quadrupole strength density, namely terms of order vaV, which are
corrolated with the incident wave, and the oovariance of their field with
the incident wave may provide contributions to the intensity field of the
sam order v^9 as the intensity field of (75).

Such higher order terms will arise is the velocity field departs
from v i + Vi as a result of interactions between the sound and the
turbulence. When the wavelength is small compared with the size of the
energy-bearing eddies, one may estimate this departure by means of
geomtrioal optics to consist principally of a phase change in Vi,
resulting from convection by the turbulent velocity field.

As a result of such conveotion a wave, which at the station
X e was plane at of the form (6) would become

Vi . ot, .sa- at .I <'.

The f3Attin& jat of the phase change, na1in.y

vld ... (77)

0

Mel

I
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has standard deviation approximately

2(v-2L (x - ... (78)
&

Over a distance x1 - xo  of a few eddy-sizes (78) will be small, even
though KL, has been assumed large, if the root mean square Mach number of
the turbalene in small enough. (Note that to find what happens as the

wave orosses a region which is a few eddy-sizes broad, one can imagine

the wave as it enters the region split into plane harmonic waves, and
treat each separately, as was shown to be permissible in §3.)

In consequence (75) is a valid first approximation to the quadrupole
strength density and a second one is obtained by substituting (76) for
Vj therein. This second approximation will differ from the first by
approximately

sin ( K (x - at))( 1, v 3 + 6 v&) fx 1v~dx. ...(79)

The radiation field of this extra quadrupole distribution, by (9), is

... -I-- sin((:, + I X - TJ - at)] V1 r1v dy,)dy....(80
P -Po -- 2-- _- Asn .

The intensity field, for large x, resulting from the interaction

of (80) with the incident wave

P . P0  = Po ecoos[,x,- at)] , ...(8)

is twice their covariance, multiplied by a'/Pc, namely

P" 2 x i ., I .t-

-- -- -- ~tsin (K ( x~ Y) Ix ~D (VI j if1 * .(82)

Now expression (82) is negligible except at points x for which typical

values of x - y and x -Y are small compared with x1 -y

,or at otherpoints the ,,o trm fluctuates rapidly about zero a'd the

net contribution from all points in the turbulent field will be nearly

sero In consequence one may replace xjvj by x1 v', and then pat

v y1  = v, ' . ...(83)
Xo

Note that equation (83) is correct independently of the lower limit xo
ovided that th is loss th about y - 2L. It i only the phase--oid d tha t h 1098 than 'ctAininh OI}WI are corrated

ohange: produced by the aotuaal Us gon it 2&0.whichre t

with the local turbulentvlocity at the point, and nIOn cMtribute to

the intensity field (82).

Hoene the intensity field from unit volume of turbulence, due

to the seonad order terms in the quadrupole strength, is

,,,,i K(= -Xd -
p~ 9 *( 5 ~ 5 v"L4
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and the contributions of different parts of the turbulence are expeoted to
canoel out exaept where i(X - x) is small.

To deduoe the contribution to the total energy P radiated per
unit time, one mAst integrate (84) over a' large sphere of radius x, and
tabs the man over all large yalues of cx Now the mean integral, in this

4 Sense, of (x/xO) sinKc(, - x*,), is

2x ooe2e sin[ ( i - oo ) sin Oa - -- , .
Jo K

as a partial integration of sinCac(t - cos e)] sin OdO shows. Haime the
rst oontributia to ps is

± a

Omaparing with (20), which also is obtained on the assumtion of small
wavelength, one sees that the two exactly balance.

The engy (86) is located principally where (x - x) is les
than about %, in other words in the paraboloidal region

x + < ..(87)
2 a K

Since the reduoed energy lies entirely in this region (for which e -- 0
as a-0d) and the scattered energy lies entirely outside a cone
o a constant 0 0, one may conclude that ultimately they become quite
separate, and that (86) represents an attenuation of the main wave directly
corresponding to the scattered energy which was inv~stigfted in the main
paper.

The argument given applies only asymptotically, for sound of small
wavelengths, and it is possible that for a given wavelength the oorrespondnce

between attenuation and scattered sound may n t tnte bbpret y a amut
enough has been Said to show that the Sound wave is atte k an amowt
at lout of the sam order of magnitude as the energy scatterede

n nn I -- - ' I
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